XF1

Modular UWB-PN-Sequence Sensor for Compressive Sensing and True MIMO Applications

Modular UWB-PN-Sequence Sensor for Compressive Sensing and True MIMO Applications

The modular ultra-wideband (UWB) pseudo noise (PN)-sequence sensor was introduced to showcase the capabilities of the EMS-developed integrated circuits (ICs) Xampling Generator 1 (XG1) and Xampling Frontend 1 (XF1) which were specifically designed to demonstrate the paradigm of compressive sampling implemented on real silicon hardware1. The sensor system divides into two main units - modular multiple input and multiple output (MIMO) transceiver (TRx) frontend and corresponding data acquisition backend.

Hardware Architecture for Ultra-Wideband Channel Impulse Response Measurements Using Compressed Sensing

Hardware Architecture for Ultra-Wideband Channel Impulse Response Measurements Using Compressed Sensing

Wagner, Christoph W. and Semper, Sebastian and Römer, Florian and Schönfeld, Anna and Del Galdo, Giovanni.

We propose a compact hardware architecture for measuring sparse channel impulse responses (IR) by extending the M-Sequence ultra-wideband (UWB) measurement principle with the concept of compressed sensing. A channel is excited with a periodic M-sequence and its response signal is observed using a Random Demodulator (RD), which observes pseudo-random linear combinations of the response signal at a rate significantly lower than the measurement bandwidth. The excitation signal and the RD mixing signal are generated from compactly implementable Linear Feedback Shift registers (LFSR) and operated from a common clock. A linear model is derived that allows retrieving an IR from a set of observations using Sparse-Signal-Recovery (SSR).