Metrology

Quantifying the Performance of Multidimensional Channel Sounding and Parameter Estimation

Measuring and characterizing the wireless propagation channel is of utmost importance for developing applications at most recent and unexplored frequency bands. However, since there are no off-the-shelf hardware solutions and no proven algorithms for new frequency bands, doing channel measurements itself is experimental, and the concepts of different research institutions and labs will widely differ. To still develop one common understanding of the wireless propagation channel, concepts for verifying and quantifying the accuracy of the channel sounding results are required1.

Metrology of Multicarrier-based Delay-Doppler Channel Sounding for sub-THz Frequencies

Metrology of Multicarrier-based Delay-Doppler Channel Sounding for sub-THz Frequencies

Jonas Gedschold; Diego Dupleich; Sebastian Semper; Michael Döbereiner; Alexander Ebert; Giovanni Del Galdo

Developing channel models typically requires aggregating channel measurements and the corresponding extracted propagation parameters from different research institutions to form a sufficiently large data basis. However, uncertainties arising from limitations of the sounding hardware and algorithms may greatly impact the comparability between sounding results. Especially, (sub-)THz channel sounders do not allow simultaneous spatially and timely resolved measurements as known from sub-6 GHz and mm-wave applications (right now), limiting the possibilities of a hardware-independent channel characterization. At the same time, a high Doppler bandwidth may occur due to the high carrier frequencies, limiting the time spans for coherent or incoherent data processing. Hence, assessing the sounder’s performance and limits is important before interpreting the measurement results.